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Protein corona formation is critical for the design of ideal and safe
nanoparticles (NPs) for nanomedicine, biosensing, organ targeting,
and other applications, but methods to quantitatively predict the
formation of the protein corona, especially for functional compo-
sitions, remain unavailable. The traditional linear regression model
performs poorly for the protein corona, as measured by R2 (less
than 0.40). Here, the performance with R2 over 0.75 in the pre-
diction of the protein corona was achieved by integrating a ma-
chine learning model and meta-analysis. NPs without modification
and surface modification were identified as the two most impor-
tant factors determining protein corona formation. According to
experimental verification, the functional protein compositions
(e.g., immune proteins, complement proteins, and apolipopro-
teins) in complex coronas were precisely predicted with good R2

(most over 0.80). Moreover, the method successfully predicted the
cellular recognition (e.g., cellular uptake by macrophages and cy-
tokine release) mediated by functional corona proteins. This work-
flow provides a method to accurately and quantitatively predict
the functional composition of the protein corona that determines
cellular recognition and nanotoxicity to guide the synthesis and
applications of a wide range of NPs by overcoming limitations and
uncertainty.
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In biological applications, nanoparticles (NPs) interact with
numerous proteins and form protein coronas immediately

upon administration into blood or contact with the extracellular
matrix (1–3). The protein corona reshapes the physicochemical
properties (e.g., size, charge, hydrophilicity, and stability) of NPs
interfacing with biological systems, thus playing an important
role in macrophage uptake, circulation time, immune responses,
and cellular recognition of NPs (4, 5). The most conventional
approach for analyzing the protein corona involves protein iso-
lation procedures followed by protein identification using mass
spectrometry-based proteomics (2, 6). The protein corona
composition refers to the relative protein abundance (RPA)
accounting for the total proteins in the corona and is an im-
portant parameter for describing the protein corona (3). The
surface mapping of protein binding sites on the biomolecular
corona of NPs was studied using antibody-labeled gold nano-
particles (7). Predicting the composition of the protein corona on
a computer instead of via laboratory experiments is cost saving
and can predict unknown interactions between biological entities
and various NPs. To date, many factors (e.g., NP physicochem-
ical properties, incubation, and separation conditions) have been
shown to affect the biological responses (8) and composition of
protein coronas (9–14). Therefore, it is difficult to delineate the
composition of the protein corona using a general linear re-
gression model or density functional theory (15). Density func-
tional theory requires specific molecular structures, requires
much time for calculations of complex systems, and is unable to
predict corona formation on NPs accurately and efficiently

because of the lack of a specific molecular structure and the
coexistence of various proteins (16). The complex relationships
between various NPs with protein corona formation and nu-
merous quantitative or qualitative factors limit the application of
density functional theory. The general linear regression model
cannot handle multivariable problems (15) and will be compared
with machine learning in the present work. Furthermore, be-
cause of the high heterogeneity between the multidimensional
properties of NPs and the protein corona functional components
(17), many traditional models (e.g., quantitative structural ac-
tivity relationship) poorly predict the functional fingerprints of
the protein corona (18, 19).
With the robust capability to build models to explain obser-

vations through experience, machine learning [e.g., random
forest (RF) (20) and neural network] has recently been applied
to recognize meaningful complex patterns to control robots (21),
predict reproductive responses (19), and predict synthetic reac-
tions (22). RF is a robust machine learning algorithm integrating
a decision tree with good learning capability (20). Compared
with support vector machines, neural networks, and other ma-
chine learning algorithms, RF achieves excellent prediction ac-
curacy on heterogeneous big data with quantitative and
qualitative factors (22, 23). Meanwhile, RF could investigate the
complex factor-response dependence inside a data-driven model
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(15, 23) with robust tolerance of heterogeneity. However, the
quantitative prediction of the functional compositions of the
protein corona by a comprehensive understanding of complex
NP–protein binding patterns remains unavailable using machine
learning (24). To address these problems, the present work at-
tempts to use a powerful RF model to identify the rules for
protein corona formation by associating numerous NP physico-
chemical properties and distinct experimental conditions with
quantitative protein corona compositions (e.g., hydrophily and
function). The work aims to develop a general and quantitative
prediction of corona formation behaviors on a wide range of
(i.e., known and unknown) NPs and experimental conditions.
The cellular recognition of NPs is well known to determine

their applications and adverse effects (3, 5), but the detection
and prediction of the cellular recognition of various NPs by ex-
perimental methods and traditional models are difficult because
of the multidimensional factor-response dependence. The pro-
tein corona associates cellular recognition (e.g., cellular uptake
by macrophages and immune responses) (3, 25, 26) by presenting
key functional motifs interacting with receptors as exposure of
critical epitopes (3). For example, clusterin acts as a dyopsonin,
increasing the stealth properties of NPs by cloaking them from
recognition by macrophages (27). Therefore, predicting the protein
corona may be an effective method to predict the biological re-
sponses of known and unknown NPs. The present work integrated
machine learning and meta-analysis to explore the potential binding
patterns of proteins on diverse NPs and then predict the biological
effects of NPs based on the functional composition of the protein
corona. The construction of a robust and flexible model is crucial
for prediction of corona formation on a wide range of NPs and
biological responses before experimental efforts, dramatically re-
ducing the cost of experimental efforts. The accurate prediction of
the functional composition of the protein corona and the resulting
cellular recognition is useful for guiding the design, synthesis, and
effective applications of known and unknown NPs.

Results and Discussion
Highly Heterogeneous Data on NPs and Protein Coronas. Currently,
studies of protein coronas are conducted under specific condi-
tions (e.g., one NP with few properties and one specific exposure
pathway), and a data library on protein coronas of various NPs is
lacking. Extraction and mining of hidden NP–protein corona-
biological response relationships from published evidence with
machine learning are urgently needed. Extraction of the data
regarding the protein coronas on NPs was performed according
to the workflow described in the Methods and SI Appendix. To
reduce publication bias and extract information from distinct
experimental conditions, strict criteria were applied in the liter-
ature extraction and data mining (shown in the Methods) (15,
28). Overall, 652 pieces of data related to the protein coronas on
various NPs were mined and analyzed. Eight qualitative factors
(NP type, NP shape, NP without modification, surface modifi-
cation, modification type, dispersion medium, incubation plasma
source, and incubation culture) and 13 quantitative factors (size
measured by transmission electron microscopy [sizeTEM] and
dynamic light scattering [sizeDLS], dispersion medium pH, zeta
potential, polydispersity index, incubation plasma concentration,
incubation NP concentration, incubation time, incubation tem-
perature, centrifugation speed, centrifugation time, centrifuga-
tion temperature, and centrifugation repetitions) were extracted,
as listed in Fig. 1. These 21 factors covered the main issues re-
lated to protein corona formation on NPs (9, 14, 17, 29). The
distribution of the mined multidimensional data in the extracted
factors and literature is presented in Fig. 1 and by Krona charts
in the SI Appendix, respectively. No particular categories or data
from any individual paper supported the dataset with the plen-
tiful hierarchical relationships describing NP characteristics.
Further details are provided in the SI Appendix. The 40 types of

NPs without modification shown in SI Appendix, Fig. S1 included
carbonaceous (e.g., multiwalled carbon nanotubes and single-
walled carbon nanotubes), metallic (e.g., Ag, Au, and Fe3O4),
nonmetallic (e.g., SiO2 and Si), and liposomal (e.g., cholesterol-
phosphatidylcholine and thiolated amino-poly[ethylene glycol]; 3
kDa) NPs. The 50 types of surface modifications listed in SI
Appendix, Table S1 included anionic (e.g., N-acetyl-L-cysteine
and thiolated L-asparagine), cationic (e.g., 11-amino-1-undeca-
nethiol and hexadecyltrimethylammonium bromide), neutral
(e.g., carboxymethyl-poly[ethylene glycol]-thiol [5 kDa] and bicy-
clononyne), common (e.g., carboxyl [COOH] and citrate [CIT]),
and rare (e.g., Pluronic F-127 and 16-mercaptohexadecanoic acid)
surface ligands. The overall modifications are listed in SI Appendix,
Table S1. The enrichment of surface modifications allowed the
machine learning model to learn a large number of protein–NP
interfaces. The large range of data for quantitative factors (e.g., 30.1
to 115.9 nm for sizeTEM and 100.0 to 1,000.0 mg/L for NP con-
centration, as listed in Fig. 1) present heterogeneous and complex
conditions for protein corona prediction.
The limited amount of data and high heterogeneity were the

major factors limiting the prediction accuracy of traditional statis-
tical approaches and machine learning models (15, 28). As observed
in SI Appendix, Figs. S1 and S2, a portion of the categories of
qualitative factors contained limited data (e.g., calcium phosphate,
multiwalled carbon nanotubes, and 6-amino-1-hexanethiol), making
it difficult to obtain high prediction accuracy from the models re-
garding these categories. The very large response (73 corona com-
ponents and 178 selected independent proteins) presented another
challenge for obtaining high prediction accuracy from models of
complex NP–protein interactions in complex biological environ-
ments. The traditional linear regression model cannot easily reveal
the complex relationships between multiple (qualitative or quanti-
tative) factors and protein corona compositions. As illustrated in SI
Appendix, Fig. S3, the value of the correlation coefficient (R2 < 0.4)
indicated poor prediction accuracy and an ambiguous relationship
between quantitative factors and protein corona composition, using
a linear regression model. To reduce the prediction errors from
protein corona composition classifications, two methods were used:
the corona compositions were classified by different physicochem-
ical and functional properties (e.g., theoretical isoelectric point [pI],
length, molecular weight, grand average of hydropathicity [GRAVY]
score and function), and the protein compositions were measured by
RPA in the subsequent analysis.

Prediction of the Protein Corona Composition. Given the above
complex data, a robust RF model with high heterogeneity tol-
erance was used to explore the physicochemical properties and
biological functions of the proteins in the complex protein co-
rona. The identified proteins on NPs were classified by GRAVY
score, length, mass, and pI. As data-driven models, machine
learning models (e.g., RF) explain observations by learning
previous experience. With robust learning capability, machine
learning is likely to be overfit with a limited set of training data
(15). To avoid overfitting and evaluate prediction accuracy
credibly, the model performance was estimated by 10-fold cross-
validation. For 10-fold cross-validation analysis, the original
dataset was randomly partitioned into 10 folds. Nine folds were
used to train the model as the training set, and the remaining one
fold evaluated model as the test set. The average R2 and
root-mean-square error (RMSE) were applied to measure model
performance. Enhancing model complexity may increase accu-
racy but decrease the generalization ability for variable condi-
tions, and vice versa (30). To balance the model prediction
accuracy and the generalization capability of the models, factor
selection was applied in the present work. Before selecting fac-
tors, the composition prediction models were built using original
datasets with 21 overall factors. According to the variable im-
portance (shown in SI Appendix, Fig. S4) and relationships
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among factors, 10 important and independent factors were se-
lected: NP without modification, surface modification, in-
cubation plasma source sizeTEM, zeta potential, incubation
plasma concentration, incubation NP concentration, centrifuga-
tion speed, centrifugation time, and centrifugation temperature.
In Fig. 2 B–D and F–H, the significantly high R2 (>0.85; P < 0.05)
and low RMSE (<8%; shown in SI Appendix, Fig. S5) values of
models in different pI value ranges are shown. The results sup-
ported that RF learned statistically tighter relationships between
corona components classified by the pI value and 10 factors than
between corona components classified by other properties (e.g.,
GRAVY score and mass). According to the high accuracies and
tight relationships for the corona components classified by pI,
electrostatic interaction could be the most important force de-
termining protein corona formation in NPs (17). Fig. 2 B–I and
SI Appendix, Fig. S5 show the good model performance (high R2,
mostly >0.75, and low RMSE, mostly below 5%) on the pre-
diction of protein corona composition, even on hundreds of in-
dividuals (R2 > 0.7; RMSE < 1). Unlike other models (e.g.,
linear regression, classification tree, and neural network model)
(15), the RF model was suitable for learning the limited and
heterogeneous data on the NP–protein coronas and biological
responses, and did not exhibit overfitting.

Inspired by the specific protein adsorption on NPs (27), the
present work further predicted the corona patterns of proteins
with different biological functions on diverse NPs. The protein
corona was divided into apolipoproteins, clusterin, coagulation
proteins, complement proteins, immune proteins, and other
proteins by biological functions and molecular composition in
the UniProt database. As shown in Fig. 2 and SI Appendix, Fig.
S5, the analysis obtained high accuracies in predicting the RPA
values of various protein corona compositions, mostly with R2

values over 0.7 and RMSE values below 5%. The models with good
performance overcame the great heterogeneity in the dataset and
offered the possibility of screening the most important factors de-
termining the compositions of the protein corona.
Screening for priority factors determining corona composition

will provide deep insight into the formation mechanisms of
protein coronas (4, 26). To evaluate the importance of the fac-
tors, two methods were provided by RF to measure factor im-
portance: the percentage of increase in mean square error
(MSE) and the mean decrease in node impurity, as shown in SI
Appendix, Fig. S6. NP without modification and surface modifi-
cation were identified as the most important factors dominating
the formation of the protein corona. The above results supported
the hypothesis that the use of surface modifications and NP

NP properties Protein corona formation Protein corona isolation

NP type (%)
        Metallic
        Liposome
        Carbonaceous
        Othersa

NP without modifications (%)
        SiO2
        Au
        PS
        Othersa

Surface modification (%)
        None
        PEG
        NH2
        Othersa

Modification type (%)
        Neutral
        Anionic
        Cationic
NP shape (%)
        Sphere
        Rod
        Tube
        Othersa

Incubation protein source (%)
        HP
        HS
        FBS
        Othersa

Incubation culture (%)
        Buffer
        Water
        DMEM

Incubation plasma concentration (%v) 

Incubation NP concentration (mg/L) 

Incubation time (h) 

Incubation temperature (°C) 

Centrifugation speed (g) 

Centrifugation time (h) Centrifugation repetitions 
(37.7)
(18.7)

(1.7)
(41.9)

(25.3)
(23.0)

(9.7)
(42.0)

(49.7)
(7.7)
(7.2)

(35.4)

(64.9)
(22.9)
(12.2)

(91.7)
(3.1)
(1.7)
(3.5)

Dispersion medium (%)
        PBS
        Plasma
        Water
        Othersa

SizeTEM (nm) 

SizeDLS (nm)b

Zeta potential (mV)b

PDIb

Dispersion medium pHb

(30.2)
(29.0)
(19.3)
(21.5)

30.2 - 116

47.3 - 158

-24.3 - -8.0

0.1 -  0.2

7.4 -  7.4

(49.5)
(25.0)
(17.2)
(8.3)

(77.8)
(17.9)
(4.3)

50.0 - 100

100.0 - 1000

        1.0  -  1.6

        37  -   37

        14000 - 15300

        15 - 30

        4.0 - 25

        1 - 1

Fig. 1. Overview of the qualitative and quantitative factors (652 data pieces). The superscript “a” represents that the other types of qualitative factors are
shown in the SI Appendix. The superscript “b” represents that the factors are measured in the same culture with the same NP concentration The overall
dataset is listed in the SI Appendix. The first to third quartiles were used to describe the data distribution. DMEM, Dulbecco’s modified Eagle medium; HP,
human plasma; PDI, polydispersity index; PEG, polyethylene glycol; PS, polystyrene.
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without modification are the two main strategies for designing
and synthesizing nanocarriers with accurate targeted delivery of
cancer therapeutics (26). The surface modifications determined
the surface interacting directly with proteins. For NPs without
modification, the surfaces of bare NPs adsorbed proteins directly
by physicochemical interactions [e.g., electrostatic attraction and
hydrophilicity (27, 31)]. However, the specific interactions be-
tween surface modifications or NPs without modification and
proteins remain unclear. Given the accurate and tight factor-

response relationship hidden in the RF models with good per-
formance to comprehensively analyze and compare the influence
of two priority factors on corona formation, the well-performed
functional composition prediction models were utilized to ex-
tract the factor-response dependence on priority factors by the
similarity network.
As shown in Fig. 3, the similarity network visualized the hetero-

geneity distribution of priority factors according to the proximity
matrixes from different functional composition models. The
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Fig. 2. Model performance of RF on protein corona compositions classified by physicochemical and functional properties and selected individual proteins. (A)
Tenfold cross-validation was utilized to estimate the model prediction accuracy. (B–H) Each point or (I) each box represents one model built from a nine-tenth
dataset, estimated by the correlation coefficient (R2). The model performance evaluated by the rootRMSE of physicochemical and functional properties and
individual proteins is shown in the SI Appendix. The specific 178 proteins are listed in the SI Appendix.
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Fig. 3. The similarity network visualizes heterogeneity of functional corona composition in models. Each node represents a data piece in the prediction
models of functional corona compositions. The nodes are colored according to the priority factors, NP without modification (A–D) and surface modification
(E–H). For well-performed RF models, the values of connected nodes are more than four times higher than the average in each proximity matrix. Tighter
connections in each cluster indicate the higher homogeneity of nodes for the factor-response dependence learned by RF models. In contrast, the sparse
connections represent the heterogeneity of nodes in terms of the NP properties and experimental conditions in the cluster. The similarity network of
functional composition models for protein clusters is shown in SI Appendix, Fig. S7. The full names of abbreviations are listed in SI Appendix, Table S1.
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proximity matrix quantified the factor-response dependence
similarity according to the frequency of two data pieces
appearing in the same node of a tree in an RF model. In the
similarity network, connected nodes represented the data
pieces containing homogeneity of physicochemical properties
learned by RF models. Given the factor-response relationships
hidden in RF models, the high homogeneity of tight-knit
clusters indicated similar factor-response relationships. In
addition, the data pieces with tight connections shared similar
corona formation patterns. In Fig. 3 and SI Appendix, Figs. S7
and S8, significantly tight-knit clusters with an abundance of
nodes associated with five functional proteins were present.
With increasing prediction accuracy, the clusters in the model
became more tightly grouped, according to the high R2 be-
tween the network density and model performance shown in
SI Appendix, Fig. S8. The consistent tendency between model
performance and clustering density indicated that the models
could explore the tighter protein binding patterns of datasets
with high homogeneity (e.g., the complement and immune
proteins in Fig. 3). Hence, the present work applied the het-
erogeneity distribution to measure the prediction accuracy
distribution of data pieces from models using the similarity
network. In various NPs without modification (Fig. 3 A–D),
there were clearly tight connections in the clusters of Au, Si,
and SiO2 NPs and liposomes. The extensive homogeneity
sharing in clusters with individual NPs indicated that the NP
without modification played a crucial role in the factor-
composition relationships associated with protein functions.
However, for the liposomes in Fig. 3, the nodes representing
various liposomes that were tightly grouped together indicated
that the various liposomes shared the same factor-response
dependence or protein binding pattern. Tight-knit connec-
tions were also observed for the same modification (e.g.,
Na88[AlO2]88[SiO2]104 and poly[vinylpyrrolidone] in Fig. 3 E–
H). In addition, less distinct boundaries existed between the
various surface modifications than between the results of NPs
without modification. Therefore, additional methods de-
scribing surface modifications [e.g., charge and log P (4, 26)]
are necessary to achieve a deeper understanding of the in-
teractions between surface modifications and proteins (27).
Given the heterogeneity distribution of priority factors in Fig. 3, the
similarity network offers a way to explore the driving force de-
termining the factor–response relationships hidden in RFmodels and
provides a perspective for evaluation of the model performance of
priority factors by measuring the heterogeneity contribution from the
priority factors. The strong driving forces at the NP–protein interface
(5, 31) can be applied to design nanocarriers that adsorb certain
proteins to increase the targeting accuracy and mediate biological
recognition, as was further confirmed by the following experiments.

Prediction of Protein Coronas and Experimental Verification. As
data-driven models, machine learning models (e.g., RF) could
explain observations using available training data with remark-
able accuracy (30, 32). However, the factor-response de-
pendence hidden in models requires new experimental data for
verification to enable highly accurate generalization regarding
corona formation behavior (especially for distinct combinations
of NPs without modification and surface modifications). To as-
sess the model quality, corona composition identification was
performed by another independent researcher (double-blind
test). In the model datasets, 40 types of NPs without surface
modifications and 50 types of surface modifications covered the
common NPs, and 10-fold cross-validation was utilized to esti-
mate the model prediction accuracy. Given the wide application
of and significant cell responses to Au NPs and Fe3O4 NPs in
therapy and imaging (17, 33, 34), the protein coronas of Au- and
Fe3O4-based NPs were analyzed in the laboratory to further
verify the performance of the model. To verify the prediction

capacity of the model for NPs, the protein coronas of Fe3O4 and
Fe3O4-CIT NPs in the model datasets and Au-NH2 and Au-
COOH not in the model datasets were detected. The NPs that
were not included in the training set made the performance of
the machine learning model challenging and valuable. Moreover,
two other frequently used NPs (Ag NPs and TiO2 NPs) were
added to verify the prediction of cellular recognition. The
characterizations of NPs are presented in Fig. 4A and SI Ap-
pendix, Fig. S9. The protein coronas were identified using liquid
chromatography tandem mass spectrometry, as shown in Fig. 4 A–F
(more details are shown in the SI Appendix). The high R2 confirmed
the consistency between observations and predictions regarding the
four functional protein compositions on four distinct NPs, especially
for apolipoprotein, coagulation, and immune proteins, where the
values of R2 were more than 0.8. The high R2 (majority over 0.6)
and small RMSEs (majority below 5%) also indicate that the model
can predict the physicochemical compositions of protein coronas on
various NPs. The present method can predict and evaluate protein
corona formation to guide the design of nanocarriers before NPs
enter complex biological environments.
It is worth noting that the corona formation mechanism

operates on individual proteins, and proteins with limited RPA
values (e.g., clusterin and IgM) play important roles in the bi-
ological recognition of NPs (26, 27). According to the good
model performance on the functional and physicochemical
components of the protein corona, the established model further
predicted the individual protein components in the corona. Fig. 5
represents the model performance for individual protein com-
ponents measured by RMSE and R2 between the observations
and predictions. As shown in Fig. 5, the good prediction accuracy
was illustrated by the high R2 (>0.5 for 71 overall proteins
and >0.7 for over half the proteins) and low RMSE (major-
ity <0.2%). The consistent adsorption tendency of protein co-
ronas on different NPs between the predictions and the observations
demonstrated that the present models were powerful enough to learn
individual protein binding patterns on NPs, although it was difficult to
predict the absolute overall RPA value of individual proteins in the
protein corona. The method provided a potential platform for de-
signing targeted nanocarriers and regulating biological responses (1,
5) by predicting and designing corona fingerprints in a complex bi-
ological environment before administration.

Predicting Cellular Recognition of Protein Coronas on NPs. Fig. 4
verified that the machine learning models could accurately pre-
dict the critical functional compositions of the corona and the
protein binding patterns of various NPs. The epitopes (rather
than merely single protein composition and amount) in the
protein corona representing biomolecular recognition motifs
played a critical role in cellular recognition, complement acti-
vation, macrophage phagocytosis, and immune response by
interacting with various receptors (3, 7, 35–37). Models that
achieve robust prediction of the functional compositions with
epitopes of the protein corona will provide insights into pre-
dicting the cellular recognition of NPs by associating the func-
tional composition of the corona with cellular recognition.
Predicting the cellular recognition of NPs is useful for guiding
the design of ideal nanocarriers (1).
Increasing attention has been paid to the unwanted cellular

uptake and inflammatory and immune responses of NPs shielded
by protein coronas in biological systems, as these responses are
important causes of shortened circulation life and limited
nanocarrier targeting efficiency (5). The coronas on NPs labeled
with endogenous proteins could be mistaken for exogenous
matter (e.g., viruses or lipoproteins) by presenting functional
epitopes allowing specific receptor recognition (38). The recog-
nition indexes were applied to measure the relationships of
functional corona compositions with immune system recognition
(37) by analyzing uptake efficiency, proinflammatory effects, and
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immune perturbation due to the presence of the corona. The
relationships of the recognition index with the predicted func-
tional composition of the protein corona were measured by R2,
as shown in SI Appendix, Figs. S11 and S12. In SI Appendix, Fig.
S11, tight correlations were present in corona compositions with
specific cellular recognition indexes and high R2 values (e.g.,

R2 = 0.92 between apolipoprotein and TNF-α releases and
R2 = −0.80 between complement proteins and cellular uptake).
The results also suggested the presence of functional compo-
sitions of the corona closely associated with the cellular rec-
ognition of different NP surfaces. For example, apolipoprotein and
complement proteins are critical innate immunity proteins (e.g.,
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apolipoprotein A-1 and complement factor H) that contribute to
various immunity pathways (26, 27). There were obvious con-
nections between functional proteins and recognition indexes in
SI Appendix, Fig. S11. The dysopsonins (e.g., clusterin and apo-
lipoproteins) or opsonins (e.g., immune proteins and comple-
ment protein) allowed similar patterns in functional motifs
interacting with recognition receptors (measured by recognition
indexes). The epitopes of the tested functional proteins enabled
specific receptor recognition on macrophages (e.g., immune
proteins in the corona activated the NF-κB pathway) (16, 26, 38).
To verify the model practicality for different cell types, three cell
lines (RAW264.7, human leukemic cell line [THP-1], and den-
dritic cell line [DC2.4]) were investigated in SI Appendix, Figs.
S11 and S12. The prediction accuracy for most of important
functional compositions was high with R2 > 0.8. The high pre-
diction accuracy was probably because machine learning is a
data-driven model and there are tight and steady relationships
between cellular recognition and functional corona composi-
tions. According to the prediction accuracy shown in Fig. 2 and
SI Appendix, Figs. S11 and S12, the models enabled the pre-
diction of the cell recognition of NPs in both fetal bovine serum
(FBS) and human serum (HS). Unlike experiments alone (25,
27), a combination of integrated machine learning and experi-
mentation supported the notion that corona functional composi-
tions play a dominant role in mediating biomolecular recognition of
NP–corona complexes (3, 39). Predicting biomolecular recognition
provides a method for designing nanocarriers (especially actively
targeted nanocarriers) and avoiding unintended biological out-
comes (e.g., cellular uptake and immune responses) during clinical
applications (1, 5).
The complex relationships among protein corona formation

and numerous NP properties or cellular recognition in biological
environments challenged the model prediction ability. With
heterogeneous data in hand, the RF model was applied to ex-
plore unknown and complex relationships hidden in various
quantitative and qualitative factors (21 factors overall). With
robust learning capability, RF performed well on corona func-
tional composition prediction on various NPs (e.g., most R2 >
0.75). Similarity analysis was also applied to analyze the het-
erogeneity distribution in RF, enabling the corona formation
patterns to be extracted from the data-driven model. Because of
the complexity in biological environments, machine learning with
robust prediction capability would promote the applications of
NPs in human healthcare.

Conclusion
The prediction of protein corona functional compositions is
critical for the design of ideal NPs for clinical applications, but
methods to quantitatively predict protein coronas have been
unavailable to date (1, 5). The high-dimensional relationships
(involving at least eight qualitative factors and 13 quantitative
factors) between the protein corona and NP properties present
challenges to traditional models and experimental methods (18,
19). By collecting knowledge from previous efforts, the present
work assembled evidence to investigate protein corona forma-
tion behaviors, overcoming the limitations and uncertainty in
distinct studies. Here, machine learning (i.e., RF) was used to
learn the complex relationships between NP properties and co-
rona composition and then to comprehensively and quantita-
tively predict the formation of protein coronas and the related
cell responses. The most important factors (NP without modifi-
cation and surface modification) determining corona formation
were identified by the RF model. The similarity network was
applied to visualize the heterogeneity distribution of the priority
factors, illustrating that the same NPs shared unique protein
binding patterns according to the factor-response dependence
extracted from high-performing models. Experiments verified
the functional and physicochemical compositions of predicted

protein coronas. Moreover, the present work associated cellular
recognition with the diverse functional compositions of the co-
rona, as predicted by machine learning models. The predicted
functional compositions of protein coronas were tightly corre-
lated with cellular recognition. NPs with “stealth” properties
induced unwanted immune responses and resulted in anaphy-
laxis after being coated with a complex protein corona (1).
Quantitative prediction of the recognition mediation of protein
coronas provides a method for designing nanocarriers (especially
actively targeted nanocarriers) and avoiding unintended bi-
ological outcomes (e.g., cellular uptake and immune responses)
during clinical applications.

Materials and Methods
Data Extraction. The present work screened 56 papers (cited in the SI Ap-
pendix), and the details of the screening methods are provided in the SI
Appendix. After reviewing the titles, abstracts, and full text, the present
work mined the literature and extracted the data representing important
factors describing the formation of the protein corona on NPs. Ten signifi-
cant and independent factors (i.e., NP without modifications, modification,
sizeTEM, zeta potential, protein source, plasma concentration, NP concen-
tration, centrifugation speed, centrifugation time, and centrifugation tem-
perature) were identified for further analyses. The details are provided in
the SI Appendix. The RPAs of proteins were classified by physicochemical
descriptions (pI, mass, length, GRAVY, aliphatic index, and cysteine content)
of proteins. According to the biological functions of proteins identified from
the UniProt database, the functional components were classified as immune
proteins, apolipoproteins, complement proteins, coagulation proteins, clus-
terin, and other proteins. The RPAs of the 178 independent proteins
extracted (with >100 RPA data pieces) were also selected to describe the
compositions of the protein corona (the details are provided in SI Appendix).
Finally, 567 and 652 data points were extracted for protein corona compo-
sition models and individual protein models, respectively.

RF Regression and Validation. As a data-driven model, RF builds trees using a
bootstrap sample from the overall data, and the best partitions in a subset
of factors were selected randomly for each node of the trees. The predic-
tions were performed by the RF algorithm aggregating the results of each
tree, and the majority vote for classification analysis and the average for
regression analysis were conducted. To quantify the relative importance of
different factors, the increase in MSE and the mean decrease in the node
impurity of each RF model were calculated by the R package randomForest.
Because the two parameters (ntree and mtry) of RF cannot determine the
predictive accuracy or model performance, the default values for the two
parameters were set. To measure the performance and the predictive ac-
curacy of the RF model, the R2 and RMSE values between the predictions and
observations were calculated. RF used ∼63% of the raw data to construct the
trees and validated the model performance with the remaining out-of-bag
data in each RF bootstrap sample (40). Because of the out-of-bag validation,
RF was robustly tolerant to overfitting (23). Moreover, 10-fold cross-
validation was applied to avoid overfitting.

Visualization of the Heterogeneity Distribution of Priority Factors in Models. To
estimate the roles of key factors in the formation of the protein corona, a
similarity network was applied to visualize the heterogeneity distribution of
priority factors in functional composition models of the protein corona. The
similarity network was drawn from the proximity matrix of models using the
Kamada-Kawai layout algorithm by the R package igraph. Each node rep-
resented a data piece of the functional composition models. The nodes were
colored according to the priority factors. From well-performed RF models,
the values of connected nodes were more than four times higher than the
average in each proximity matrix. The connecting nodes shared a similarity
in the RF models. The clustering density was utilized to measure the tight-
ness and heterogeneity of the network.

Characterization of NPs for Model Verification. NH2- and COOH-coated Au NPs
(G820971 and G820972) were obtained from Macklin Company, China.
Fe3O4 NPs (MB9863) and CIT-modified Fe3O4 NPs (MB9866) were obtained
from Meilunbio Company, China. Ag NPs (XFJ14) and TiO2 NPs (XFI02) were
obtained from Nanjing XFNANO Materials Tech Co., Ltd., China. The mor-
phology of the nanomaterials was examined using high-resolution TEM
(JEM-2800, JEOL, Japan). The hydrodynamic size and zeta potential of the
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nanomaterials in water and phosphate-buffered saline (PBS) were measured
using a ZetaSizer Nano-ZS instrument (Malvern Instruments, Worcestershire, UK).

Model Verification and Prediction of Unknown Protein Coronas. Normal human
plasma was obtained from Jiaozuo LFFBio Tech Co., Ltd., China, and
centrifuged at 1,408 × g, and the supernatant was collected for interaction
with NPs. Then, Fe3O4 and Fe3O4-CIT NPs (2.5 mg/mL, 850 μL) dispersed in PBS
were incubated with human plasma (3,400 μL) in a shaker at 150 rpm and
37 °C for 1 h. Au-COOH and Au-NH2 NPs (2.5 mg/mL, 850 μL) were incubated
with 3,400 μL of human plasma at 37 °C for 1 h. After incubation, the NP–
plasma protein complexes were separated through centrifugation (21,913 ×
g, 4 °C) for 15 min, and the pellets were intensively washed with PBS and
collected for further analysis. The protein was identified by mass spec-
trometry, and the details are provided in SI Appendix.

Cellular Uptake and Cytokine Analysis. The murine macrophage cell line
RAW264.7 was obtained from the Shanghai Cell Bank of the Type Culture
Collection of China. Cells were grown in Dulbecco’s modified Eagle medium
(high glucose, Ding Guo, China) supplemented with 10% FBS (AusGeneX,
Australia) and a final concentration of 100 units/mL penicillin/streptomycin
in a humidified incubator with 5% CO2 at 37 °C. Macrophages were seeded
on 24-well plates at a density of 5 × 104 cells/well for 12 h and then in-
cubated in fresh serum-free medium for 2 h. The NPs (Fe3O4, Fe3O4-CIT, Ag,
TiO2, Au-NH2, and Au-COOH NPs) at 50 mg/L with or without protein co-
ronas were incubated with the macrophages in serum-free medium. After

4 h of exposure, the cells were washed twice with PBS, lysed in cell lysis
buffer (Beyotime Biotechnology, China), and then centrifuged at 11,180 × g
for 5 min. The supernatant (20 μL) was used to determine the protein con-
centration by using a BCA Kit (Beyotime Biotechnology, China), and the rest
was digested using HNO3 until no color was observed. After the digestive
solution was filtered through a 0.22-μm micropore membrane, the concen-
trations of metal elements were measured by inductively coupled plasma
mass spectrometry (Elan drc-e, PerkinElmer). The intracellular ion content
was normalized to the total protein content and is represented as a per-
centage with respect to the control group. To analyze the effects of cell
types and culture medium on models, another two cell types (dendritic cell
line [DC2.4] and human leukemic cell line [THP-1]) in both FBS and HS were
tested. The cytokines (tumor necrosis factor-α and interleukin 6) were
measured using ELISA kits (Dakewe, Shenzhen, China), and the details are
provided in the SI Appendix.

Data Availability. Code in the paper is available at https://github.com/
BanZhan/RF-and-PC.
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